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J. Phys. A :  Gen. Phys., Vol. 5, August 1972. Printed in Great Britain. 0 1972. 

Phase transitions in a one dimensional model of a 
ferromagnet : a transfer-matrix approach 

J L MARTIN 
Wheatstone Physics Laboratory, King’s College, University of London, London WC2, U K  

MS received 16 March 1972 

Abstract. It is shown that a transfer-matrix method provides a particularly direct solution 
for a ferromagnetic version of a one dimensional model originally invented by Fisher. An 
essential feature of this model is the many body potential, leading to a phase transition. All 
the thermodynamical properties of the model may be written down once the dominant 
eigenvalue and eigenvector of the matrix are known; in particular, surface properties may 
be obtained in terms of the dominant eigenvector. Typical phase diagrams are obtained, 
and the singularities at the phase boundaries discussed. 

1. Introduction and summary 

It is now some years since Fisher (1967a) invented a ‘physically natural’ one dimensional 
model of a fluid with both liquid and gaseous phases. The essential feature of this model 
is that a set of particles which are in a certain sense not too far apart interact to form a 
cluster, with its own characteristic energy ; the interaction is short range in that distinct 
clusters do not interact. The possibility of a phase transition arises from the many 
body nature of the interaction; thus the mechanism is different in other models with 
pairwise long range interactions. Fisher and Felderhof (1970a,b), Felderhof and Fisher 
(1970) and Felderhof (1970a,b) have shown that cluster models can show a great variety 
of transition behaviour, according to the interaction chosen ; as these authors supply 
a good list of references, we mention here only those papers that impinge directly on 
this work. 

The purpose of this paper is to consider the ferromagnet (or equivalently, the one 
dimensional lattice gas) which is in essence a discrete version of the Fisher cluster 
model. The precise form of the model is given in Q 2, and we show in 0 3 and Q 4 that 
a ‘transfer-matrix’ method provides a particularly simple route to the complete thermo- 
dynamics (cf Lassettre and Howe 1941). In fact, not only is the ‘partition function per 
spin’ the dominant eigenvalue of the transfer matrix, but the surface correction for a 
semi-infinite chain can be simply written in terms of the dominant eigenvector (Q 7). 
Similarly we may obtain full information on other features, such as the statistics of 
cluster sizes in the model, though we do not discuss these in this paper (but see Felderhof 
1972). This directness and the versatility of the matrix approach are not affected by 
the fact that the transfer matrix is of infinite dimension (as it has to be, since a system 
with a finite-dimensional transfer matrix may be expected to show no phase change). 

In # 3-5 it is shown that as many as three phase regions may exist in the (T,  H) 
plane ; for convenience, we call these the paramagnetic and the (+) or (-) ferromagnetic 
regions. The ferromagnetic regions are characterized by the presence of a cluster of 
infinite size. The mechanism of the transition as a phase boundary is crossed depends 
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on which way the boundary is approached. On the paramagnetic side there is a break- 
down of convergence of certain infinite series; on the ferromagnetic side there are no 
mathematical singularities of this type, the transition here arising from a breakdown 
in the physical interpretation of the eigenvector. The nature of the singularities on the 
paramagnetic side of a phase boundary is discussed in $ 6 ,  and some comments are 
made on the probable irrelevance of the cluster model for the Ising model in higher 
dimensions. 

2. Themodel 

The model consists of a chain of ‘spins’, whose two possible values are + 1 and - 1 ; 
any assignment of these values to the spins of the chain constitutes a typical configura- 
tion. The energy associated with any configuration is to be computed as follows. 

An ( m  +) cluster of the configuration is a set of m consecutive spins which have all 
been assigned the value + 1, flanked by spins with value - 1 ; an (m-) cluster is similarly 
defined. Thus a configuration is an alternating sequence of (+) and (-) clusters of 
various sizes. The energy of a configuration is then the sum of the energies of the 
individual clusters in the configuration; these in turn are given by 

energyof an (m +) cluster = - m(J + H) + U,,, 
energy of an (m -) cluster = - m(J - H) + U,,, 

where J > 0, and the r]  must satisfy r],Jm + 0 as m -+ CO. Clearly J + H  are bulk 
energies per spin of the clusters, while the r ] ,  may be thought of as size-dependent ‘surface 
corrections’ (though such a description is less appropriate in one dimension than in 
two or three). 

The usual one dimensional Ising model (with an unimportant overall energy shift 
+ J )  is obtained by setting every r ] ,  = 2J.  It is well known that there is then no phase 
change. The point of the more general prescription (2.1) is that it is possible to obtain a 
model exhibiting a phase change by a proper choice of the energies )I,,,. The precise 
circumstances under which this happens are examined in $ 5 ; they depend on the con- 
vergence properties of a certain series involving r],. Roughly it may be said that the 
r]  are to be chosen so that the formation of large clusters becomes energetically favour- 
able, though this is not the whole story. 

It is convenient to divide the solution of the model into two sections, depending on 
whether an infinite cluster is absent or present; we shall call the two possibilities ‘para- 
magnetic’ and ‘ferromagnetic’. In $ 5  we shall find that for every temperature and 
magnetic field one or other of these possibilities holds, and thus that the complete 
solution is obtained. Throughout, we write p = l/kT. 

3. The transfer matrix 

We shall find it convenient to consider the semi-infinite chain (rather than the infinite 
chain), with the advantages that a simple transfer-matrix treatment is possible and that 
the surface properties as well as the bulk properties can be determined ($7). In this 
section we consider the problem of finding the form of the transfer matrix T. 

Write A&H) for the canonical partition function for a finite chain of N spins. 
Further, write A & H ; m + )  for the contribution to this partition fundion from all 
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those configurations which have exactly an ( m  +) cluster at (say) the right hand end of 
the chain; similarly for A,@, H ; m - ). These contributions are mutualIy exclusive and 
leave nothing out. 

We shall take the limit N -+ a by allowing the left hand end of the chain to grow 
indefinitely. In this limit we define for each m 2 1 

p,' = p,'(p, H) = proportion of configurations in the statistical ensemble 
with exactly an ( m  +) cluster at the right hand end 

Analogously 

(We shall often omit the arguments p and H.) We also introduce what we may loosely 
describe as the bulk partition function per spin 

AN+ 1 A z A(p, H) = lim -. 
~ - + m  AN 

(3.3) 

Naturally we assume that all these limits exist. 

sufficient to provide a complete picture. For even though 
It may happen that in the limit the numbers p,' of equations (3.1) and (3.2) are not 

f (*++ A ( m + )  A&-) = 1 
m =  1 AN 

for all finite N ,  it does not follow that in the limit ( p i  + p ; )  = 1 unless the inter- 
change of two limiting operations can be justified. In fact, it is precisely those circum- 
stances where the interchange is not valid which lead to the possibility of a phase change ; 
the thermodynamic limit, as it were, acquires a feature not present in the finite case. 
This feature is the possible appearance of a semi-infinite (+) or (-) cluster (possibly 
with finite clusters to its right). 

p i  
We must therefore introduce two further quantities 

p i ( / ? ,  H) = proportion in the statistical ensemble of configurations 

and p i ,  similarly defined. All the p taken together now provide an exhaustive picture 
with 

(3.4) 

consisting solely of an infinite (+) cluster 

m 

P i + &  + 1 ( P i  +Pi) = 1. 
m =  1 

The transfer-matrix equations are obtained by considering the effect of adding a 
further spin to the right hand end of the chain. Before the limit N -+ CO is taken, we 
have, for m 2 2 

- 
AN+ = exp(p(J+ H - r ] m +  )Im- l)}AN(m- +) 

this comes about since for m 2 2 any configuration of N + 1 spins terminating in an 
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(m+)  cluster is uniquely - obtained from a corresponding configuration of N spins 
terminating in an (m- 1 +) cluster. The Boltzmann factor accounts for the energy 
difference of the two clusters. Dividing (3.5) by A, and going to the limit gives 

AP: = exp{B(J + H - q m  + q m  - 1)>~, '-  1 (m 2 2) (3.6) 

by (3.1) and (3.3); similarly 

Further relations follow from noting that configurations ending in a (1 +) cluster are 
obtained from configurations ending in a ( - )  cluster of any length; note that we must 
include ,the possibility of an infinite ( - )  cluster : 

APT = exP{P(J+H-rll)) (3.8) 

(3.9) 

To obtain an equation for p:, we use (3.5) with m = N + 1 ; in the limit N + CO 

AP: = exP{b(J+H))P: (3.10) 

and similarly 

(Strictly, this route assumes lim(q, - q m -  = 0, and this need not be true-though it 
is true for 'reasonable' models. However, there is no other physically acceptable 
possibility for (3.10) or (3.11), since the energy per spin of an infinite cluster is 

lim m-l{ -m(J+H)+q,) = J + H  
m+m 

by 

the variables p ; they may be concisely written 
Taken together, (3.6 to  11) form an infinite set of linear equations homogeneous in 

Ap = Tp (3.12) 

the infinite-dimensional transfer matrix Tbeing defined by the right sides oftheequations. 
As is to be expected, A is an eigenvalue of T. In the next section, we shall see that among 
the eigenvalues of T there are at least one and at  most three which are real and positive, 
depending on the values of /1 and H. 

4. The eigenvalues of the transfer matrix 

The matrix Tis  extremely sparse : only two rows have more than one nonzero element. 
Consequently finding its eigenvalues is very straightforward. First, repeated use of 
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(3.6) gives, for any m > 1 

P,' = EA- ' exp{ B(J + W}Y-' ~ X P (  - B ( q m  - v ~ ) > P :  ; (4.1) 
substituting this in (3.9) then gives 

3c 

P; = PLA-' ~~P{B(J -H-v~)}+P:  exd-2PW C [A- '  exp(B(J+H))Imexp(-P~m). 

(4.2) 
m = l  

Here we see the first appearance of an infinite series which will occur repeatedly in the 
sequel, and which therefore merits a special notation : 

m 

Q(x, B) E x m  exp( - B q m )  (4.3) 
m =  1 

certainly convergent for 1x1 < 1, and certainly divergent for 1x1 > 1. This is the analogue 
for this model of the master function of Fisher and Felderhof; its properties, in particular 
its convergence properties, determine the thermodynamics of the model. From (4.2) 
and (4.3) 

(4.4) P; = P ~ A - '  exp{B(J-H-r]J}+p: exp(--2BWW-'  exp{B(J+H)},j?). 

These equations, when taken with equations (3.10) and (3.11) complete a set of four 
linear homogeneous equations for p :  and p : .  In order that they possess a nontrivial 
solution, the eigenvalue A must satisfy a consistency condition, which may be written as 

[l - A - '  exp{p(J+H))][l-A-' exp{j?(J-H)}]A(A;P,H) = 0 (4.6) 

where we have put for convenience 

A(A;j?,H) l-Q(A-lexp{/?(J+H)},/?)Q(A\-' exp{B(J-H)},j?). (4.7) 

In fact, one may show (though we shall not pursue this) that (4.6) is precisely the 
characteristic equation of T, that is 

det(Z-A-'T) = 0. 

If T were a finite matrix, this would be enough. However, we are concerned here 
with an infinite matrix, and any A satisfying (4.6) is an eigenvalue only if the relevant 
convergence properties hold. In fact, (4.4) and (4.5) make sense only if both series 
converge ; that is 

Q(A-'  exp(P(J+H)},j?) i CO 

Q(A- l  exp(P(J-H)}, j?) < a. 

There are three factors in (4.6); we may thus expect that eigenvalues may appear 

Firstly A = exp{j?(J+H)} satisfies (4.6). The conditions (4.8) become 
in three different ways. 



One dimensional model of a ferromagnet 1181 

We conclude 

(i) If R(1, P )  converges, and H 2 0, A = exp{p(J +H)} is an eigenvalue. 

A similar examination of A = exp{P(J - H)} gives 

(ii) If R( 1, P )  converges, and H < 0, A = exp{ P(J - H)} is an  eigenvalue. 

The remaining factor in (4.6) may also lead to  eigenvalues; we search for those 
which are real and positive. In the range 0 < x < 1, R ( x ,  P )  is a convergent series of 
positive terms; its sum therefore increases monotonically with x from 0 (at x = 0) to 
either a finite value o or to  CO (at x = 1). Consequently, (4.7) shows that A(A ; 8, H) 
decreases monotonically from 1 as A - '  increases from 0, and may therefore exhibit 
not more than one zero. The condition for exactly one zero is that A(A; p, H) < 0 when 
A- takes its largest value consistent with convergence. Thus we have 

(iii) If A(exp{P(J + IHI)} ; 8, H) < 0, then there is a real eigenvalue A with 
exp{P(J+IHI)} < A < CO. 

There are no other possibilities for real positive eigenvalues, though it is easy to construct 
models for which A = 0 has complex roots. 

It should be noted that there is always at least one real positive eigenvalue. If 
R(1, /3) converges, then either (i) or (ii) applies; if R(1, p)  diverges, then 

A(exp{P(J + IHI)} ; P,  H) -+ - 
and (iii) applies. On  the other hand, there may be as many as three such eigenvalues 
(two of them being a degenerate pair); the conditions for this, namely H = 0 and 
1 < R(1, P )  < CO, are easily achieved in suitable models. 

When more than one eigenvalue A exists, the thermodynamically correct one is 
always the largest, as might be expected. It is simple to verify that where more than one 
eigenvalue exists, all the p are positive only for the dominant eigenvalue; the others 
are thus ruled out on physical grounds. It follows that case (iii) always overrides cases 
(i) and (ii) when more than one case applies. When we take account of the dominant 
eigenvalue only, the cases (i-iii) may be characterized as follows : 

(i) p :  # 0, p ,  = 0; every configuration of the ensemble contains an infinite (+) 

(ii) p :  = 0, p ,  # 0; every configuration of the ensemble contains an infinite ( - )  

(iii) p:  = p i  = 0 ;  
The usual Ising model is obtained with I], = 2J,  for all m. In this case R may be 

(4.9) 
and it is instructive to see where this leads. Only case (iii) can apply here, since R(1, 8) 
diverges for any P. In the absence of a magnetic field (H = 0), (4.6) is satisfied by 

cluster (possibly with finite clusters to its right) ; 

cluster ; 
no configuration contains an infinite cluster of either kind. 

summed in closed form 

R(x, /I) = exp( - 2PJ)x( 1 - x)- '  (Ising) 

R(A-' exp(PJ), P)  = f 1 

leading directly to 

A = 2 cosh PJ or 2 sinh PJ.  

Apparently therefore T has two eigenvalues of familiar form. However, the value 
2 sinh PJ is to be rejected, since in this case A - '  exp(pJ) > 1 ,  and R diverges. Thus T 
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has in fact just one real eigenvalue 2 cosh p J ,  and no complex eigenvalues at all. It 
should be noted that any possibility of analytic continuation of Q(x, p) beyond its 
circle of convergence 1x1 = 1 is quite irrelevant here. 

5. The phase boundaries 

Following from the discussion of 9 4 we may distinguish three types of region in the 
(p, H) plane : 

(a)  regions where there exists an eigenvalue of type (iii) and where therefore there 

(b)  regions where there is no eigenvalue of type (iii), but where there is one of type 

(c) regions where there is no eigenvalue of type (iii), but where there is one of type 

The whole (p, H) plane (for /3 > 0) is accounted for by regions of one kind or another. 
In locating the different types of region, it is convenient first to consider what happens 

as H varies along lines of fixed P. There are three cases, depending on the convergence 

Case I : p is such that Q( 1, p)  does not converge. Then whatever the value of H ,  
there is an eigenvalue of type (iii), and the ordinate at /? lies entirely in a paramagnetic 
region. 

Case 11: j is such that Q(1, p)  converges to w > 1. To fix ideas take H > 0, and 
note that 

(a)  A(exp{j(J + H ) }  ; f i ,  H) = 1 - wQ(exp( - 2PH), 8) is monotonic with H ; 
(b)  A = 1 - w 2 < O w h e n H = 0 ;  
(c) A - +  + l a s H - + c o .  

is no infinite cluster ; we call these regions paramagnetic; 

(i); here there is an infinite (+) cluster ((+)ferromagnetic regions); 

(ii); there is then an infinite ( - )  cluster ((-)ferromagnetic regions). 

of QU, 8). 

It follows that for small enough H there is an eigenvalue of type (iii), and for large enough 
H there is not. Thus we may conclude that as H varies, regions of all three types are 
encountered by the ordinate at P. The boundaries are defined by 

A(exp{P(J + IHI) ; P,  H) = 0. 

Case 111: p is such that Q(1, p)  converges to w < 1. This differs from case I1 only 
in that A = 1 --a2 > 0;  this means that the ordinate at p meets only ferromagnetic 
regions. The boundary between the regions is H = 0. 

It follows from these considerations that in order to draw the phase diagram it is 
sufficient to understand the convergence properties of Q( 1, p) as /J varies. To this end, 
suppose that p; is the least upper bound of LX for which K can be found with 

for all m. (5.1) 
K 
ma 

exp( - YI,) < - 

Then a simple comparison of series shows that Q( 1, p)  converges or diverges according 
as P > Po or P < Po.  (Of course, Po may not exist; in such an event R converges or 
diverges everywhere.) In passing we remark that the most singular part of Q (in the 
sense of Fisher 1967b p623) can be found by the same series comparison : 

This will be used in 96. 
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There are several possibilities : 
(i) R(1, P )  may diverge for all P (eg qm = constant, independent of m). For all P,  

case I applies, the entire (B, H) plane is a single paramagnetic region, and there is no 
phase transition. 

(ii) R( 1, j )  may converge for all j > 0 (example = m'/*) .  Cases I1 or 111 apply 
for all /3 > 0 ;  that is, a phase change is possible at any temperature. 

(iii) Q(1, P )  may converge only for P > jo (eg qm = lnm, Po = 1). Phase changes 
are possible for /3 > Po ; that is, for low enough temperatures. 

We consider possibility (iii) in more detail ; the relevant phase diagrams are sketched 
in figure l(b). Since 

Q( 1, P)  = c exp( - PV,) 

is a series of positive terms 

W , P )  > 0 for all P > Po 
and 

lim R(1,P) = CO. 
8+80+ 

Since 

I 
I 
I 

I I 

I 

I 

I 

( + I  ferromagnetic I 
I 

I 
I 
I 
I 
I 

Paramagnetic I 

I 
I 
I 
I 
I 
I 

1 

( -  1 ferromagnetic I 
I 
I 
I 
I 

.. . . ..._. . _. . ._ . ... . . . . . ._ . . tu+- I 

(+) ferromagnetic 

I 
I 

I Paramagnetic I 
I 

I 
I 

Figure 1. (a) Typical possibilities for the form of n(1,B). ( b )  The corresponding typical 
possibilities for the phase boundaries in the (P, H) plane. 
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R( 1,p) is convex downwards. Finally, as P + x 

Q(1, P )  -+ 0 

Q(1, P )  --+ 

if all qm > 0 

if qm = 0 for n values of m 

qm > 0 otherwise 

R(1, 8) + x if any qm < 0. 

Some typical graphs of R are sketched in figure l(a) to cover all qualitative behaviour. 
Possibility (ii) is similar, except that now case I does not occur, the asymptote 

/l = Po moving to the remote right of the diagrams. 

6. The nature of the phase changes 

It is of interest to examine the properties of the model at the phase boundaries. At a 
boundary common to two ferromagnetic regions the situation is clear : as H changes 
sign, the magnetization changes discontinuously and the transition is first order. 

The behaviour at the boundary of a paramagnetic region is more complicated. 
Assume for convenience H > 0. On the ferromagnetic side, A = exp{P(J + H ) ) ,  and 
x = A - ’  exp(p(J+H)) = 1 ; thus all derivatives of x on the ferromagnetic side are 
zero. This suggests that it will be useful to  examine the derivatives of s as (p,  H )  
approaches the boundary from the paramagnetic side. 

In the paramagnetic region, x satisfies 

A(x- exp{P(J + H ) )  ; P, H )  = 1 - R(x, P)Q(x exp( - 2PHh 8) = 0 (6.1) 

by (3.14). On the boundary x = 1 and x exp( - 2PH) lies inside the circle of convergence 
of R. Thus the singular behaviour of the derivatives of x is determined by the singular 
behaviour of R(x, P) at x = 1 -, and this was indicated at  (5.2). 

We shall consider derivatives with respect to H (at constant p). Differentiating (6.1) 
once gives 

ax 
R’(x, P)Q(x exp( - 2PH), p)-+ R(x, P)R’(x exp( - 2PH), P )  -- 2Px exp( - 2PH) = 0 

(6.2) 
aH (e ) 

where 

First suppose that Po < P < 2p0 ; then by (5.2) and (6.3), Q(1, P )  converges and Q’(1, 0) 
diverges. Solving (6.2) then shows that ax/aH -+ 0 as x -+ 1 - ; in fact 

Integrating in the neighbourhood of Ho - gives 

(1-x) - (ff,-H)fiO/(@-flo) 



One dimensional model of a ferromagnet 

hence 

More generally 
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(6.4) 

In consequence, when P lies in the range 

n+2  n + l  
n + l  - P o  < P < T P O  

exactly n derivatives of x are zero at H = H ,  (and therefore continuous over the bound- 
ary), while all the rest diverge on the paramagnetic side. Thus the ‘order’ of the transition 
increases indefinitely as /3 + Po + . 

Whether or not there are parts of the paramagnetic boundary for which P > 21, 
clearly depends on the location of the triple point, if there is one. If such parts do exist, 
both R and 0’ converge there, and solving (6.2) gives a finite nonzero value for a x / d H  
on the paramagnetic side, and consequently a discontinuity over the boundary, that is, 
the transition is then first order. 

An interesting feature of the model is the fact that throughout either ferromagnetic 
region A is analytic in both P and H ,  and may be continued analytically beyond the 
boundary with the paramagnetic region. Moreover, all other quantities, such asp:, p 
behave smoothly as the boundary into the paramagnetic region is crossed. It might be 
supposed that this implies some kind of metastability; this is not so, since outside a 
ferromagnetic region p ;  and p :  have opposite signs, in conflict with their physical 
meaning. The phase transition from the ferromagnetic side comes about not on account 
of any mathematical singularity, but on account of a breakdown in the physical interpreta- 
tion of the formalism. 

It may be asked what light is thrown by the one dimensional cluster model on the 
critical behaviour of the Ising model in higher dimensions. The answer must be: not 
much. The phase diagrams are clearly very different; in particular, the fundamental 
result of Lee and Yang (1952) that for the Ising ferromagnet in nonzero field the thermo- 
dynamic functions are nowhere singular is certainly not true of the cluster model. 
Moreover, the phase boundary in the Ising ferromagnet terminates at a finite point in 
the (P, H )  plane, and does not divide the plane into separate regions with distinct 
mathematical regimes. There is no such boundary in the case of the cluster model. 

7. Surface properties 

In models where the transfer-matrix method may be applied, the dominant eigenvalue 
leads to the bulk properties of the system. If the corresponding eigenvector is available, 
the surface properties are easily obtained (cf Lassettre and Howe 1941). 

We assume that the limit 
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exists and is not zero. (It will be seen that this is so at any point within the paramagnetic 
region of the phase diagram.) Then for large N we may write 

AN - E A N E .  

that is ;I may be regarded as a surface correction for a long chain: there is a factor 2 
for each of the two ends. From (7.1) there follows 

In the paramagnetic region, the left side may be expressed in terms of the eigen- 
vector of T. Firstly, A M + N  may be regarded as the partition function for two chains 
(of M and N spins) linked by one further bond. If we now group the configurations 
contributing to A M +  according to the clusters on either side of this bond, we have 

' M  + N = ( A M ( m  + ) A N ( n  + + A M ( m - ) A N ( n - ) )  exp{ - P ( q m + n - q m -  q n ) }  
m,n 

+ ( A M ( m - ) A N ( n + ) f A M ( m + ) A N ( n - ) )  
m,n 

the Boltzmann correction in the first sum is necessary, since, for example, if the clusters 
adjacent - to the bond are (m+)  and ( n + )  respectively, they form in reality a single 
(m+ n + )  cluster. Using (7.2), (3.1) and (3.2) gives in the limit 

cc 

= C [ ( P , ~ P , +  + P~P,) ~ X P {  - P ( q m  + n- q m -  qn)} + ( P , ~ P ,  + P,'P, )I. 
m= 1 
n =  1 (7.3) 

This is the required result. 
To go further, we may determine the p from the work of 0 3, taken with the normaliz- 

ing condition Z ( p ;  +pn-)  = 1; substituting in (7.3) gives, after considerable rearrange- 
ment 

+similar expression with H replaced by - H (7.4) 

where A is as before the bulk partition function per spin. As in the case of the bulk 
properties, the surface properties are completely determined by the behaviour of the 
master function Q, The singularities in a paramagnetic neighbourhood of a boundary 
may now be investigated as in 0 6. 

For the Ising model, Q is given by (4.9) and then (7.4) leads directly to 

(A@, 0) ) -2  = exp(PJ) cosh PJ ( H  = 0) 
and hence by (7.1) 

A N @ ,  0) - (2 cosh PJ)N{exp(PJ) cosh / ? J } - '  

for large N .  In fact, the Ising model is special in that AN is given exactly by this expression 
for every N .  

Similar techniques may be applied in the ferromagnetic regions, though the develop- 
ment is complicated by the need to reckon with the infinite cluster. 
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